Unit 4 Problem Set

Learning Objectives

- Categorize and predict the products for metathesis, combination, decomposition, acid/base, oxidation and precipitation reactions
- Define and distinguish between Arrhenius and Bronsted-Lowry acids and bases

Read about these topics: Section 4.2, and Section 4.1

1. Identify which solid precipitates when the two solutions are mixed
a. $\mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq})}$ and $\mathrm{CaCl}_{2(\mathrm{aq})}$
b. $\mathrm{AgNO}_{3(\mathrm{aq})}$ and $\mathrm{MgCl}_{2 \text { (aq) }}$
2. Identify which solid precipitates when the two solutions are mixed
a. $\mathrm{Ba}(\mathrm{OH})_{2(\text { aq })}$ and $\mathrm{FeCl}_{3 \text { (aq) }}$
b. $\mathrm{CaI}_{2(\mathrm{aq})}$ and $\mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{aq})}$
3. Identify all of the spectator ions in the following reactions
a. $\mathrm{Na}_{2} \mathrm{~S}_{(\mathrm{aq})}+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \rightarrow \mathrm{FeS}_{(\mathrm{s})}+2 \mathrm{NaNO}_{3(\text { aq })}$
b. $2 \mathrm{LiF}_{(\mathrm{aq})}+\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2(\text { aq })} \rightarrow 2 \mathrm{LiC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\text { aq })}+\mathrm{PbF}_{2(\mathrm{~s})}$
4. Identify all of the spectator ions in the following situations
a. $\mathrm{CuF}_{2(\mathrm{aq})}$ is mixed with $\mathrm{K}_{2} \mathrm{CO}_{3(\mathrm{aq})}$
b. $\mathrm{CuClO}_{4(\text { aq })}$ is mixed with $\mathrm{NaBr}_{(\mathrm{aq})}$
5. Write the net ionic equation for the following reactions
a. $\quad \mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{aq})}+\mathrm{AgNO}_{3(\mathrm{aq})} \rightarrow$
b. $\mathrm{KOH}_{(\mathrm{aq})}+\mathrm{CuNO}_{3(\text { aq })} \rightarrow$
6. In each of the following reactions, identify which compound is acting as the base and which compound is acting as the acid.
a. $\mathrm{H}_{2} \mathrm{SO}_{3(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{Na}_{2} \mathrm{SO}_{3(\text { aq })}$
b. $\mathrm{HClO}_{3(\mathrm{aq})}+\mathrm{KOH}_{(\mathrm{aq})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{KClO}_{3(\mathrm{aq})}$

Unit 4 Problem Set

7. Which of the depicted solutions is a weak acid solution? Which of the depicted solutions is a strong acid solution?

8. What is the oxidation number of X in each of the following compounds?
a. $\mathrm{XO}_{3}{ }^{-2}$
b. XO_{4}^{-3}

Watch a video of a similar problem
9. Give the oxidation number for each element in the given compounds
a. PbSO_{4}
b. FeCO_{3}
10. Give the oxidation number for each element in the given compounds
a. MnO_{2}
b. $\mathrm{H}_{2} \mathrm{O}$
11. In the following reaction, identify what is being oxidized, what is being reduced, the oxidizing agent and the reducing agent
$\mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{OH}^{-}{ }_{(\mathrm{aq})}+\mathrm{Ni}^{2+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Ni}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Watch a video on a similar problem
12. In the following reaction, identify what is being oxidized, what is being reduced, the oxidizing agent and the reducing agent
$\mathrm{NO}_{3^{-}(\mathrm{aq})}+4 \mathrm{H}^{+}{ }_{(\text {aq })}+\mathrm{Cr}_{(\mathrm{s})} \rightarrow \mathrm{Cr}^{3+}{ }_{(\text {aq })}+\mathrm{NO}_{(\mathrm{g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Watch a video on a similar problem

Unit 4 Problem Set

Learning Objective: Balance chemical reactions

Read more about this topic: Section 4.1
13. Balance the reaction: $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{Fe}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}$
14. Balance the reaction: $\mathrm{C}_{9} \mathrm{H}_{20(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}$
15. Balance the reaction: $\mathrm{Li}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{LiOH}_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$
16. Balance the reaction: $\mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{Li}_{3} \mathrm{PO}_{4(\mathrm{aq})} \rightarrow \mathrm{LiCl}_{(\mathrm{aq})}+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}$

Learning Objective: Perform calculations relating quantities in chemical reactions, including limiting reactant, theoretical yield, and percent yield calculations
Read more about this topic: Section 4.3 and Section 4.4
17. How many mols of HCl are required to complete react 0.447 mols of aluminum according to the following, balanced chemical reaction:
$2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow 2 \mathrm{AlCl}_{3(\mathrm{aq})}+3 \mathrm{H}_{2(\mathrm{~g})}$
18. If 0.376 mols of aluminum are reacted with excess HCl , how many mols of hydrogen gas will be produced?
$2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow 2 \mathrm{AlCl}_{3(\mathrm{aq})}+3 \mathrm{H}_{2(\mathrm{~g})}$
19. Urea $\left(\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right)$ can be synthesized via the following chemical reaction. If 2.60 g of ammonia is reacted with excess carbon monoxide, how many grams of urea are formed?
$2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Watch a video of a similar problem
20. Formaldehyde, a naturally occur organic molecule that historically was used to preserve animal species, is carcinogenic, and has been observed in interstellar medium can be synthesized from methanol using the following reaction:
$\mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{g})} \rightarrow \mathrm{CH}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{H}_{2(\mathrm{~g})}$
If 15.14 g of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ is reacted, how many grams of formaldehyde $\left(\mathrm{CH}_{2} \mathrm{O}\right)$ are produced?
Watch a video of a similar problem

Unit 4 Problem Set

21. Incomplete combustion leads to the formation of toxic compounds like carbon monoxide. How many grams of oxygen would be necessary to completely combustion 15.69 g of octane?
$2 \mathrm{C}_{8} \mathrm{H}_{18(\mathrm{l})}+25 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 16 \mathrm{CO}_{2(\mathrm{~g})}+18 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
22. Hydrochloric acid is reacted with iron (II) sulfide to form hydrogen sulfide according to the balanced chemical equation. If 1.92 mols of hydrochloric acid are reacted with 1.34 mols of iron (II) sulfide, how many mols of hydrogen sulfide are formed?
$2 \mathrm{HCl}_{(\mathrm{aq)}}+\mathrm{FeS}_{(\mathrm{s})} \rightarrow \mathrm{H}_{2} \mathrm{~S}_{(\mathrm{aq})}+\mathrm{FeCl}_{2(\mathrm{aq})}$
23. In the following reaction, which reactant is the limiting reactant?

24. How many grams of precipitant are formed when 23.23 mL of a 0.76 M aqueous solution of magnesium bromide is combined with 23.24 mL of a 0.18 M aqueous solution of silver nitrate? Watch a video of a similar problem
25. Hydrazine can be synthesized via the following reaction:
$2 \mathrm{NH}_{3 \text { (aq) }}+\mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{NaOH}_{\text {(aq) }} \rightarrow \mathrm{N}_{2} \mathrm{H}_{4 \text { (aq) }}+2 \mathrm{NaCl}_{\text {(aq) }}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
What is the theoretical yield when $1.10 \mathrm{~g} \mathrm{NH}_{3}$ is reacted with 7.17 of Cl_{2} and excess sodium hydroxide?
Watch a video of a similar problem
26. Based on the balanced chemical reaction, how many mols of excess reactant is left when 0.27 g of magnesium is reacted with 42.34 mL of 1.16 M of hydrochloric acid?
$\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{HCl}_{\text {(aq) }} \rightarrow \mathrm{MgCl}_{2(\mathrm{qq)}}+\mathrm{H}_{2(\mathrm{~g})}$
Watch a video of a similar problem
27. If 5.9 g of copper(II) oxide is reacted with excess hydrogen gas and 3.02 g of copper is collected, what is the percent yield?
$\mathrm{CuO}_{(\mathrm{s})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{Cu}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Unit 4 Problem Set

Learning Objective: Titrations

Read more about this topic: Section 4.5
28. It requires 47.18 mL of 0.79 M NaOH to fully titrate 43.78 mL of HCl , what is the molarity of the acid?
29. Potassium hydrogen phthalate (KHP) is a monoprotic weak acid that is often used to standardize solutions for titrations. If it requires 54.3 mL of a sodium hydroxide solution to completely react 1.64 g of KHP (Molar Mass: $204.222 \mathrm{~g} / \mathrm{mol}$), what is the molarity of the sodium hydroxide?
30. How many mL of 1.03 M HCl would be required to completely react 2.90 g of CaSO_{3} $\mathrm{CaSO}_{3(\mathrm{~s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CaCl}_{2(\mathrm{aq})}$ Watch a video of a similar problem

